A sound or a noise that accompanies wood machining processes is introduced by the tool rotation itself, by the friction of moving machine parts, or by wood-tool interaction. The sounds generated during machining with a circular saw could be analysed in order to monitor and possibly control the cutting process. Applying altered cutting parameters while cutting beech wood (Fagus sylvatica L.), which is the most common wood species in the Republic of Serbia, caused acoustic emissions that could be analysed throughout corresponding spectra. As shown in previous studies, altering the cutting parameters, e.g., the feed speed and tool override, resulted in variations in power consumption, surface roughness, and acoustic emission (or acoustic pressure). The aim of this paper was to provide a possible correlation between the applied cutting parameters and the acoustic emission spectra with respect to consumed power and the state of the machined surface. Along with acoustic emissions, the power consumption and surface roughness data were also acquired in order to make a possible relationship. By associating the idle circular saw acoustic spectra with background noise and comparing them with those obtained during machining, it was possible to indicate spectrum areas of particular interest for further analysis.