To meet the application requirements of electronic connectors, a trivalent chromium process (TCP) conversion coating was prepared on the Zn–Ni alloy plating of 2024 aluminium alloy. The composition of the TCP solution was as follows: 45 g/L Cr(NO3)3, 14 g/L CoCl2, 1.3 g/L NiCl2, 10 g/L citric acid, 10 g/L succinic acid and 1 g/L sodium dodecyl sulphate. The properties of TCP were characterised by a range of techniques, including macroscopic observations, scanning electron microscope, energy‐dispersive X‐ray spectrometer, three‐dimensional (3D) morphometry, electrochemical impedance spectroscopy, polarisation curves and conductivity tests. The TCP prepared in this experiment exhibits a uniform black colour and bright appearance, predominantly composed of Zn, Ni, O, Cr and Co. The TCP enhances the impedance of Zn–Ni alloys, reduces the corrosion current to 1.99 × 10−5 A/cm2 and maintains a flatter surface 3D morphology and less surface roughness following electrochemical testing. It has better corrosion resistance. Following the preparation of the TCP on a suitably sized shell sample, the shell resistance was 1.2 mVDC with good electrical conductivity, which meets the requirements for electrical connector applications.