Due to the mechanical nature of container handling operations, as well as natural factors, container and handling infrastructure suffers various types of damage during use, especially within the tight and enclosed environments of a ship’s hull. In this operational environment, it is critical to detect any sort of physical impacts between the vertical cell guides of the ship’s hull and the container. Currently, an inspection of impacts and evaluation of any consequences is performed manually, via visual inspection processes. This process is time-consuming and relies on the technical expertise of the personnel involved. In this paper, we propose a five-step impact-detection methodology (IDM), intended to detect only the most significant impact events based on acceleration data. We conducted real measurements in a container terminal using a sensory device placed on the spreader of the quay crane. The proposed solution identified an average of 12.8 container impacts with the vertical cell guides during common handling operations. In addition, the results indicate that the presented IDM can be used to recognize repeated impacts in the same space of each bay of the ship, and can be used as a decision support tool for predictive maintenance systems.