Urban green and blue spaces refer to the natural and semi-natural areas within a city or urban area. These spaces can include parks, gardens, rivers, lakes, and other bodies of water. They play a vital role in the sustainability of cities by providing a range of ecosystem services such as air purification, carbon sequestration, water management, and biodiversity conservation. They also provide recreational and social benefits, such as promoting physical activity, mental well-being, and community cohesion. Urban green and blue spaces can also act as buffers against the negative impacts of urbanization, such as reducing the heat island effect and mitigating the effects of stormwater runoff. Therefore, it is important to maintain and enhance these spaces to ensure a healthy and sustainable urban environment. Assessing urban green and blue spaces with space-based multi-sensor datasets can be a valuable tool for sustainable development. These datasets can provide information on the location, size, and condition of green and blue spaces in urban areas, which can be used to inform decisions about land use, conservation, and urban planning. Space-based sensors, such as satellites, can provide high-resolution data that can be used to map and monitor changes in these spaces over time. Additionally, multi-sensor datasets can be used to gather information on a variety of environmental factors, such as air and water quality, that can impact the health and well-being of urban residents. This information can be used to develop sustainable solutions for preserving and enhancing urban green and blue spaces. This study examines how urban green and blue infrastructures might improve sustainable development. Space-based multi-sensor datasets are used to estimate urban green and blue zones for sustainable development. This work can inform sustainable development research at additional spatial and temporal scales.