2022
DOI: 10.3390/app12105204
|View full text |Cite
|
Sign up to set email alerts
|

Research on Door Opening Operation of Mobile Robotic Arm Based on Reinforcement Learning

Abstract: The traditional robotic arm control method has strong dependence on the application scenario. To improve the reliability of the mobile robotic arm control when the scene is disturbed, this paper proposes a control method based on an improved proximal policy optimization algorithm. This study researches mobile robotic arms for opening doors. At first, the door handle position is obtained through an image-recognition method based on YOLOv5. Second, the simulation platform CoppeliaSim is used to realize the inter… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
3

Year Published

2022
2022
2025
2025

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 17 publications
(7 citation statements)
references
References 17 publications
0
4
0
3
Order By: Relevance
“…This study establishes an experimental platform dedicated to robotic unpacking operations, encompassing a mobile robotic arm platform apparatus alongside a laboratory door (Wang et al, 2022). This mobile manipulator is intricately composed of a six-degree-offreedom manipulator, a crawler chassis, a gripper, and a camera, all illustrated in Fig.…”
Section: Results and Discussion Of Reality Experimentsmentioning
confidence: 99%
“…This study establishes an experimental platform dedicated to robotic unpacking operations, encompassing a mobile robotic arm platform apparatus alongside a laboratory door (Wang et al, 2022). This mobile manipulator is intricately composed of a six-degree-offreedom manipulator, a crawler chassis, a gripper, and a camera, all illustrated in Fig.…”
Section: Results and Discussion Of Reality Experimentsmentioning
confidence: 99%
“…A partir dos dados exibidos na Tabela 1, conclui-se que 28,95% dos trabalhos estudados não utilizam manipuladores reais, mas simuladores para validar os experimentos e suas respectivas abordagens propostas. Estas abordagens foram: aprendizado de movimentos ponto a ponto [3], aprendizado com feedback interativo [27], algoritmos de interac ¸ão contínua [24], manipulac ¸ão de objetos [35], tarefa de abertura de porta [45], manipulac ¸ão coordenada de multi-robôs [20], controle neural adaptativo [42], controle de manipuladores [18], planejamento de trajetória [47], inspec ¸ão robótica [14] e controle de posic ¸ão [49]. [48,17,19,38] Não utilizou [3,27,24,35,45,20,42,18,47,14,49] Verifica-se também que a variedade de manipuladores robóticos utilizados é ampla, sendo o modelo UR3 da Universal Robots o mais utilizado entre estes em trabalhos com enfoque em: Tarefa peg-in-hole [6,4] e controle de brac ¸o duplo robótico [23]; seguido do PANDA [10,34], UR5 [31,22], RM-X52 [32,33] e IRB 1600 [1,2].…”
Section: A Manipuladores Robóticos E Simuladoresunclassified
“…Estas abordagens foram: aprendizado de movimentos ponto a ponto [3], aprendizado com feedback interativo [27], algoritmos de interac ¸ão contínua [24], manipulac ¸ão de objetos [35], tarefa de abertura de porta [45], manipulac ¸ão coordenada de multi-robôs [20], controle neural adaptativo [42], controle de manipuladores [18], planejamento de trajetória [47], inspec ¸ão robótica [14] e controle de posic ¸ão [49]. [48,17,19,38] Não utilizou [3,27,24,35,45,20,42,18,47,14,49] Verifica-se também que a variedade de manipuladores robóticos utilizados é ampla, sendo o modelo UR3 da Universal Robots o mais utilizado entre estes em trabalhos com enfoque em: Tarefa peg-in-hole [6,4] e controle de brac ¸o duplo robótico [23]; seguido do PANDA [10,34], UR5 [31,22], RM-X52 [32,33] e IRB 1600 [1,2]. Além disso, 3 trabalhos fizeram o uso de manipuladores produzidos em laboratório, customizados ou com pec ¸as impressas em 3D, implementados em: Controle de articulac ¸ões robóticas [36], planejamento de movimento [46] e mapeamento de controlador de brac ¸o robótico [37].…”
Section: A Manipuladores Robóticos E Simuladoresunclassified
See 1 more Smart Citation
“…The approach proposed in [6], which combines PI 2 learning and compliant controller, required 9 roll-outs on average. Another approach [46] proposed policy learning in the simulated environment and application of learned policy in a real environment. Learning in a simulated environment took approx 300 trials.…”
Section: Door Opening Learningmentioning
confidence: 99%