Regenerative braking energy recovery is of critical importance for electric vehicles due to their range limitations. To further enhance regenerative braking energy recovery, a dual-fuzzy regenerative braking control strategy based on braking intention recognition is proposed. Firstly, the distribution strategy for braking force is devised by considering classical curves like ideal braking force allocation and ECE regulations; secondly, taking the brake pedal opening and its opening change rate as inputs, the braking intention recognition fuzzy controller is designed for outputting braking strength. Based on the recognized braking strength, and considering the battery charging state and the speed of the vehicle as inputs, a regenerative braking duty ratio fuzzy controller is developed for regenerative braking force regulation to improve energy recovery. Furthermore, a control experiment is established to evaluate and compare the four models and their respective nine braking modes, aiming to define the dual fuzzy logic controller model. Ultimately, simulation validation is conducted using Matlab/Simulink R2019b and CRUISE 2019. The results show that the strategy in this paper has higher energy savings compared to the single fuzzy control and parallel control methods, with energy recovery improved by 26.26 kJ and 96.13 kJ under a single New European Driving Cycle (NEDC), respectively.