Logistics distribution vehicle planning is an important issue in logistics transportation activities, and it is also a research hotspot in theoretical circles at home and abroad. At present, many studies have focused on establishing vehicle planning models and optimizing vehicle planning in different environments and have achieved rich results. As an important part of transportation production process, the efficiency of logistics distribution is very important to the whole production process. Especially for emergency logistics, every minute is very critical for emergency situations such as disaster relief. In order to improve the efficiency of emergency logistics, this paper applies multiagent technology to emergency logistics and puts forward an integrated modeling method of enterprise macromodeling, business process mesomodeling, and micromodel design. Using the agent-oriented system development method, an emergency logistics distribution vehicle planning model system is established. The development process of multiagent automatic trading system is described. The results show that it is feasible and effective to use multi-intelligent fuselage technology for emergency logistics distribution vehicle planning and decision-making. The algorithm proposed in this paper has advantages over the container order sequence processing scheme, and the total cost of order acceptance decreases sharply in the initial stage, which shows the practical convergence of the algorithm. The adjacency search method and Tabu search method deal with the calculation of total labor cost, and the Tabu neighborhood search algorithm obtains better results with lower labor cost.