Human-machine interfaces (HMIs) are widely studied to understand the human biomechanics and/or physiology and the interaction between humans and machines/robots. The conventional rigid or invasive HMIs that record/send information from/to human bodies have significant disadvantages in practice for longterm, portable, and comfortable usages. To better adapt to natural soft skins, soft HMIs have been designed to deform into arbitrary shapes, and their bendable, stretchable, compressible and twistable properties offer a huge potential in future personalized applications. This paper presents a survey on various soft HMIs in terms of design, sensing, stimulation as well as their applications. Specifically, tactile / motion / bio-potential sensors are categorized for recording various data from human bodies, while stimulators are discussed for information feedback and motion activation to human bodies. It is anticipated that soft HMIs will promote the interaction among humans, machines/robots and environment to achieve desired coexisting-cooperativecognitive function in a robot system, named as Tri-Co Robot, for the human-centered applications, such as rehabilitation, medical monitoring and human-robot cooperation.