Wireless sensor networks (WSNs) have emerged as a significant architecture for data collection in various applications. However, the integration of WSNs with IoT poses energy-related challenges due to limited sensor node energy, increased energy consumption for wireless data sharing,
and the necessity of energy-efficient routing protocols for reliable transmission and reduced energy consumption. This paper proposes an optimized energy-efficient routing protocol for wireless sensor networks integrated with the Internet of Things. The protocol aims to improve network lifetime
and secure data transmission by identifying the optimal Cluster Heads (CHs) in the network, selected using a Tree Hierarchical Deep Convolutional Neural Network. To achieve this, the paper introduces a fitness function that takes into account cluster density, traffic rate, energy, collision,
delay throughput, and distance from the capacity node. Additionally, the paper considers three factors, including trust, connectivity, and QoS, to determine the best course of action. The paper also presents a novel optimization approach, using the hybrid Marine Predators Algorithm (MPA) and
Woodpecker Mating Algorithm (WMA), to optimize trust, connectivity, and QoS parameters for optimal path selection with minimal delay. The simulation process is implemented in MATLAB, and the developed method’s efficiency is evaluated using several performance metrics. The results of
the simulation demonstrate the effectiveness of the proposed method, which achieved significantly lower delay (99.67%, 98.38%, 89.34%, and 97.45%), higher delivery ratio (89.34%, 89.34%, 83.12%, and 88.96%), and lower packet drop (93.15%, 91.25%, 79.90%, and 92.88%) in comparison to existing
methods. These outcomes indicate the potential of the optimized energy-efficient routing protocol to improve network lifetime and ensure secure data transmission in WSNs integrated with IoT.