With the rise of electric vehicles, autonomous driving, and valet parking technologies, considerable research has been dedicated to automatic charging solutions. While the current focus lies on charging robot design and the visual positioning of charging ports, a notable gap exists in addressing safety aspects during the charging plug-in process. This study aims to bridge this gap by proposing a collision classification scheme for robot manipulators in automatic electric vehicle charging scenarios. In situations with minimal visual positioning deviation, robots employ impedance control for effective insertion. Significant deviations may lead to potential collisions with other vehicle parts, demanding discrimination through a global visual system. For moderate deviations, where a robot’s end-effector encounters difficulty in insertion, existing methods prove inadequate. To address this, we propose a novel data-driven collision classification method, utilizing vibration signals generated during collisions, integrating the robust light gradient boosting machine (LightGBM) algorithm. This approach effectively discerns the acceptability of collision contacts in scenarios involving moderate deviations. Considering the impact of passing vehicles introducing environmental noise, a noise suppression module is introduced into the proposed collision classification method, leveraging empirical mode decomposition (EMD) to enhance its robustness in noisy charging scenarios. This study significantly contributes to the safety of automatic charging processes, offering a practical and applicable collision classification solution tailored to diverse noisy scenarios and potential contact forms encountered by charging robots. The experimental results affirm the effectiveness of the collision classification method, integrating LightGBM and EMD, and highlight its promising prediction accuracy. These findings offer valuable perspectives to steer future research endeavors in the domain of autonomous charging systems.