Abstract:This paper uses the random forest algorithm model to quantify and predict the monetary policy of the People's Bank of China under the input of 16 indicators macroeconomic indicators. It is compared with three other machine learning algorithms (CART decision tree, support vector machine and neural network algorithm), discrete selection model and combined prediction model. The results show that the random forest algorithm shows better prediction accuracy in predicting the direction of the central bank's monetary… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.