Eco-environmental evaluation is a prerequisite for balancing the relationship between coal resource recovery and eco-environmental protection. This paper divides the eco-environment system in coal mining area into 5 subsystems regarding geomorphology, climate, hydrology, land and vegetation, and human activity. Within the 5 subsystems, 13 indicators capable of reflecting eco-environment levels of coal mine fields are selected, weighed using genetic projection pursuit model, and applied to eco-environmental quality evaluation. Based on this, the spatial feature of the quality is analysed using spatial autocorrelation method, recognising the areas that need managements. Factors driving the eco-environment characteristics of coal mines are identified using geographic detector. The feasibility of the developed evaluation system is verified with Ibei Coalfield as a case. The results show that Ibei Coalfield sees a spatially heterogeneous eco-environment pattern. Geographic detector can quantify the impact of various indicators on ecological environment, and the indicator is of stronger interpretation ability as interacting with others. It is also indicated that mining area eco-environment is nonlinearly correlated to impact indicators. The spatial autocorrelation analysis suggests three areas that should be treated strategically, that are the management area, close attention area and protective area. This paper can provide scientific references for mining area eco-environmental protection, which is significant for the sustainability of coal mine projects.