2022
DOI: 10.14569/ijacsa.2022.01312124
|View full text |Cite
|
Sign up to set email alerts
|

Research on Improved Xgboost Algorithm for Big Data Analysis of e-Commerce Customer Churn

Abstract: With the increasing cost of acquiring new users for e-commerce enterprises, it has become an important task for e-commerce enterprises to actively carry out customer churn management. Therefore, based on the distributed gradient enhancement library algorithm (XGBoost), this research proposes a big data analysis study on e-commerce customer churn. First, it conducts an evaluation analysis on e-commerce customer segmentation and combines the random forest algorithm (RF) to build an RF XGBoost prediction model ba… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?