Oil extraction is shifting towards high-temperature and high-pressure environments, which leads to the deterioration of the rubber material used in packer rubber cylinders, ultimately resulting in sealing failure. Hence, we propose enhancing the configuration of the rubber cylinder by incorporating a composite material consisting of metal and rubber. Additionally, we suggest integrating springs at the shoulders to fabricate a spring-embedded shoulder protection packer rubber cylinder. ABAQUS 2023 software was employed to simulate the packer setting process, investigating the variations in compression distance between a conventional packer rubber cylinder and a spring-embedded shoulder protection packer rubber cylinder. The results showed that at 25 °C and 177 °C, the compression distance of the fully seated spring-embedded shoulder protection packer rubber cylinder was reduced by 3% compared to the traditional packer rubber, Mises stress was reduced by 14%, and the sealing performance evaluation coefficient K of the rubber cylinder was increased by 2% to 10%.The stress in the spring-embedded shoulder protection packer rubber cylinder is primarily concentrated between the spring and the wire mesh, effectively ensuring the performance of the rubber cylinder and mitigating any potential decrease in sealing performance caused by internal stress concentration. The spring-embedded protective rubber cylinder will not experience shoulder protrusion during the sealing process. The incorporation of a spring-embedded shoulder protection mechanism in the packer rubber cylinder enhances the contact stress between the rubber cylinder and casing tube, mitigates stress concentration within the rubber cylinder, resolves shoulder protrusion issues, and ultimately improves both sealing performance and service life.