A pulse laser with a wavelength of 1064 nm and a pulse width of 1 µs was used to experiment on the coating of a 2024 aluminum alloy surface. The removal performance of the pulse laser cleaning coating was explored by a single factor analysis and orthogonally conditions, and the effects of the laser power, scanning speed, and pulse frequency on the quality of laser coating removal were summarized. The mechanisms of pulse laser cleaning the coating were studied. The results show that the three parameters of the laser power, scanning speed, and pulse frequency have different effects on the quality of laser coating removal. Among them, with the increase of the scanning speed and pulse frequency, the quality of laser cleaning first increases and then decreases, respectively. With the increase in laser power, the quality of laser cleaning increases. A good laser cleaning quality can be achieved at the laser power of 16.5 W, a scanning speed of 600 mm/s, and a pulse frequency of 30 kHz. The laser cleaning coating involves a variety of mechanisms such as combustion, explosion, gasification, thermal vibration stripping, and laser plasma impact. The result can provide practical references for a better searching of the paint removal.