2023
DOI: 10.21595/mme.2023.23719
|View full text |Cite
|
Sign up to set email alerts
|

Research on lightweight pedestrian detection based on improved YOLOv5

Yunfeng Jin,
Zhizhan Lu,
Ruili Wang
et al.

Abstract: Aiming at the problems of low detection accuracy and the large size of the pedestrian detection algorithm, to improve the edge intelligent recognition capability of the terminal, this paper proposes a lightweight pedestrian detection scheme based on the improved YOLOv5. In this paper, the algorithm first takes the original YOLOv5 as the basic framework and uses the Ghost Bottleneck module to replace the C3 module in the original YOLOv5 network to reduce the number of parameters, eliminate redundant features, a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 16 publications
0
0
0
Order By: Relevance