Based on geometry model of single abrasive particle, comparing abrasive geometries of different materials displayed in SEM images, it is proposed that abrasive geometry is similar to inverted cone with vertex radius in sphere. Based on abrasives with inverted cone geometry, through introducing sliding ratio, mathematical models of cutting force and specific grinding energy of single abrasive have been established to study about cutting force in meshing line of single abrasive; in accordance with specific grinding energy of single abrasive, combined with internal meshing principle, the relationship among specific grinding energy, engagement, and meshing line length l have been studied. Through simulation analysis, it is shown that the unit normal force of single abrasive in whole meshing line gradually increases from tooth top to pitch line and tooth root; the greater the value of l from pitch line to tooth top, the more the specific grinding energy accordingly; however the greater the value of l from pitch line to tooth root, the smaller the specific grinding energy therewith; the greater the engagement, the smaller the specific grinding energy which tends to stable with changing of l.