A multi-time scale optimal dispatch model based on the scenario method and model predictive control (MPC) in the AC/DC distribution network is established due to the uncertainty of wind and load. A Markov chain dynamic scenario method is proposed, which generates scenarios by characterizing the forecast error via empirical distribution. Considering the time correlation of the forecast error, Markov chain is adopted in the Markov chain dynamic method to simulate the uncertainty and variability in wind and load with time. A multi-time scale optimal dispatch strategy based on MPC is proposed. The operation scheduling of operation units is solved in day-ahead and intraday optimal dispatch by minimizing the expected value of total cost in each scenario. In the real-time optimal dispatch, the stability and robustness of system operation are considered. MPC is adopted in the real-time optimal dispatch, taking the intraday scheduling as reference and using the roll optimization method to compute real-time optimal dispatch scheduling to smooth the output power. The simulation results in a 50-node system with uncontrollable distributed energy demonstrate that the proposed model and strategy can effectively eliminate fluctuations in wind and load in AC/DC distribution networks.