Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose Aerodynamics plays a crucial role in enhancing the performance of race cars. Due to the low ride height, the aerodynamic components of race cars are affected by ground effects. The changes in pitch and roll attitudes during the car’s movement impact its ride height. This study aims to analyze the aerodynamic characteristics of race cars under specific pitch and roll attitudes to understand the underlying aerodynamic mechanisms. This paper focuses on the aerodynamic characteristics of racing cars under variations in body posture associated with different vehicle ride heights. It examines not only the force and pressure distribution resulting from changes in the overall vehicle posture but also the flow field behavior of both surface flow and off‑body flow. Analyzing individual components reveals the impact of the front wing on the overall aerodynamic performance and aerodynamic balance of the racing car under these posture variations. Design/methodology/approach The grid strategy for the computational fluid dynamics (CFD) method was established under baseline conditions and compared with the results from wind tunnel experiments. The CFD approach was further employed to investigate the aerodynamic characteristics of the racing car under varying body postures associated with different vehicle ride heights. Emphasis is placed on the overall aerodynamic performance of the vehicle and the various components’ influence on the changing trends of aerodynamic forces. By considering the surface pressure distribution of the car, the primary reasons behind the changes in aerodynamic forces for each component are investigated. In addition, the surface flow and detached flow (wake and vortex distributions) of the car were observed to gain insights into the overall flow field behavior under different attitudes. Findings The findings indicate that both pitch and roll attitudes result in a considerable loss of downforce on the front wing compared with other components, thereby affecting the overall downforce and aerodynamic balance of the vehicle. Originality/value This paper focuses on the aerodynamic characteristics of racing cars under variations in body posture associated with different vehicle ride heights. It examines not only the force and pressure distribution resulting from changes in the overall vehicle posture but also the flow field behavior of both surface flow and off-body flow. Analyzing individual components reveals the impact of the front wing on the overall aerodynamic performance and aerodynamic balance of the racing car under these posture variations.
Purpose Aerodynamics plays a crucial role in enhancing the performance of race cars. Due to the low ride height, the aerodynamic components of race cars are affected by ground effects. The changes in pitch and roll attitudes during the car’s movement impact its ride height. This study aims to analyze the aerodynamic characteristics of race cars under specific pitch and roll attitudes to understand the underlying aerodynamic mechanisms. This paper focuses on the aerodynamic characteristics of racing cars under variations in body posture associated with different vehicle ride heights. It examines not only the force and pressure distribution resulting from changes in the overall vehicle posture but also the flow field behavior of both surface flow and off‑body flow. Analyzing individual components reveals the impact of the front wing on the overall aerodynamic performance and aerodynamic balance of the racing car under these posture variations. Design/methodology/approach The grid strategy for the computational fluid dynamics (CFD) method was established under baseline conditions and compared with the results from wind tunnel experiments. The CFD approach was further employed to investigate the aerodynamic characteristics of the racing car under varying body postures associated with different vehicle ride heights. Emphasis is placed on the overall aerodynamic performance of the vehicle and the various components’ influence on the changing trends of aerodynamic forces. By considering the surface pressure distribution of the car, the primary reasons behind the changes in aerodynamic forces for each component are investigated. In addition, the surface flow and detached flow (wake and vortex distributions) of the car were observed to gain insights into the overall flow field behavior under different attitudes. Findings The findings indicate that both pitch and roll attitudes result in a considerable loss of downforce on the front wing compared with other components, thereby affecting the overall downforce and aerodynamic balance of the vehicle. Originality/value This paper focuses on the aerodynamic characteristics of racing cars under variations in body posture associated with different vehicle ride heights. It examines not only the force and pressure distribution resulting from changes in the overall vehicle posture but also the flow field behavior of both surface flow and off-body flow. Analyzing individual components reveals the impact of the front wing on the overall aerodynamic performance and aerodynamic balance of the racing car under these posture variations.
Purpose This paper aims to reduce the cost of experiments required to test the efficiency of materials suitable for artificial tissue ablation by increasing efficiency and accurately forecasting heating properties. Design/methodology/approach A two-step numerical analysis is used to develop and simulate a bioheat model using improved finite element method and deep learning algorithms, systematically regulating temperature distributions within the hydrogel artificial tissue during radiofrequency ablation (RFA). The model connects supervised learning and finite element analysis data to optimize electrode configurations, ensuring precise heat application while protecting surrounding hydrogel integrity. Findings The model accurately predicts a range of thermal changes critical for optimizing RFA, thereby enhancing treatment precision and minimizing impact on surrounding hydrogel materials. This computational approach not only advances the understanding of thermal dynamics but also provides a robust framework for improving therapeutic outcomes. Originality/value A computational predictive bioheat model, incorporating deep learning to optimize electrode configurations and minimize collateral tissue damage, represents a pioneering approach in interventional research. This method offers efficient evaluation of thermal strategies with reduced computational overhead compared to traditional numerical methods.
Purpose The aerodynamic load caused by high-speed train operation may lead to severe vibration of the pedestrian bridge, thus causing great safety hazards. Therefore, this study aims to investigate the aerodynamic loading characteristics of a pedestrian bridge when a high-speed train passes over the bridge, as well as to evaluate the vibration response of the aerodynamic loads on the bridge structure. Design/methodology/approach High-speed trains are operated at three different speeds. The aerodynamic pressure load characteristics of high-speed trains crossing a pedestrian bridge are investigated by combining a nonconstant numerical simulation method with a dynamic modeling test method, and the vibration response of the bridge is analyzed. Findings The results show that when a high-speed train passes through the pedestrian bridge, the pedestrian bridge interferes with the attenuation of the pressure around the train, so that the pressure spreads along the bridge bottom, and the maximum positive and negative pressure peaks appear in the center area of the bridge bottom, while the pressure fluctuations in the bridge entrance and exit areas are smaller and change more slowly, and the pressure attenuation of the bridge bottom perpendicular to the direction of the train’s operation is faster. In addition, the pressure fluctuation generated by the high-speed train will lead to a larger vertical response of the bridge structure in the mid-span position, and the main vibration frequency of the bridge structure ranges from 8 to 10 Hz, and the maximum value of the vertical deformation amplitude is located in the mid-span region of the bridge. Originality/value This paper analyzes the flow field distribution around the train and at the bottom of the bridge for the evolution of the flow field when the train passes through the bridge at high speed, and conducts a finite element dynamic analysis of the bridge structure to calculate the vibration response of the bridge when the train passes through at high speed, and to evaluate the comfort of the passengers passing through the high-speed railroad bridge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.