Research on Real-Time Prediction Method of Photovoltaic Power Time Series Utilizing Improved Grey Wolf Optimization and Long Short-Term Memory Neural Network
Xinyi Lu,
Yan Guan,
Junyu Liu
et al.
Abstract:This paper proposes a novel method for the real-time prediction of photovoltaic (PV) power output by integrating phase space reconstruction (PSR), improved grey wolf optimization (GWO), and long short-term memory (LSTM) neural networks. The proposed method consists of three main steps. First, historical data are denoised and features are extracted using singular spectrum analysis (SSA) and complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). Second, improved grey wolf optimization (GWO… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.