Aiming the problem that the mechanical claw in very few rapid secure devices (RSD) failed to capture the shipborne helicopter fixed rod due to the lose effectiveness of the internal shock absorption system of the RSD, a reliability growth test bench is built to conduct a reliability growth test study on the shock absorption system in a single RSD test prototype. The fault locations are identified according to the fault phenomenon. After the fault causes are found, the reliability optimization designs of the shock absorption system are conducted, and the optimization design schemes are determined. With the discrete army materiel systems analysis activity (AMSAA) model analysis method, according to the reliability growth test data of the test prototype, the maximum likelihood estimation of the model parameters is determined based on a genetic algorithm. A trend test for the reliability growth of the test prototype and goodness-offit test for the AMSAA model are conducted, and the reliability estimation and lower confidence limit of the reliability of the test prototype in the final development stage of the shock absorption system are obtained. The test data and statistical inference indicate that the reliability optimization designs using scheme 2 in the first test stage and scheme 1 + scheme 2 in the second test stage are correct and feasible, which meets the reliability requirements that the RSD reliability is not less than 99.5% and improves the robustness of the shock absorption system. This study further provides data support for the reliability research of RSD, which is of great significance to improve the service capacity of RSD equipment and ensure the life safety of shipborne helicopter.INDEX TERMS Discrete AMSAA model, genetic algorithm, rapid secure device, reliability growth, shock absorption system.