Carbonation is one of the critical issues affecting the durability of reinforced concrete. Evaluating the depth of concrete carbonation is of great significance for ensuring the quality and safety of construction projects. In recent years, various prediction algorithms have been developed for evaluating concrete carbonation depth. This article provides a detailed overview of the existing prediction models for concrete carbonation depth. According to the data processing methods used in the model, the existing prediction models can be divided into mathematical curve models and machine learning models. The machine learning models can be further divided into the following categories: artificial neural network model, decision tree model, support vector machine model, and combined models. The basic idea of the mathematical curve model is to directly establish the relationship between the carbonation depth and age of concrete by using certain function curves. The advantage of the mathematical curve model is that only a small amount of experimental data is needed for curve fitting, which is very convenient for engineering applications. The limitation of the curve model is that it can only consider the influence of some factors on the carbonation depth of concrete, and the prediction accuracy cannot be guaranteed. The advantage of using the machine learning model to predict the carbonation depth of concrete is that many factors can be considered at the same time. When there are sufficient experimental data, the trained machine learning model can give more accurate prediction results than the mathematical curve model. The main defect of the machine learning model is that it needs a lot of experimental data as training samples, so it is not as convenient as the mathematical curve model in engineering applications. A future research direction may be to combine a machine learning model with a mathematical curve model to evaluate the carbonation depth of concrete more accurately.