2022
DOI: 10.1093/tse/tdac066
|View full text |Cite
|
Sign up to set email alerts
|

Research on text fault recognition for on-board equipment of a C3 train control system based on an integrated XGBoost algorithm

Abstract: The robust guarantee of train control on-board equipment is inextricably linked to the safe functioning of a high-speed train. A fault diagnostic model of on-board equipment is built utilizing the integrated learning XGBoost (eXtreme Gradient Boosting) algorithm to help technicians assess the malfunction category of high-speed train control on-board equipment accurately and rapidly. XGBoost algorithm iterates multiple decision tree models to improve the accuracy of fault diagnosis by lifting the predicted resi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?