Aiming to survey scenarios of offshore projects with difficult horizontal elevation transmission and long-distance, all-weather elevation monitoring operations, a long-distance, total station, trigonometric leveling based on dynamic compensation is proposed. The feasibility of this method was verified by an outdoor survey experiment, and the range of transverse coverage and accuracy reached by this method was quantitatively analyzed. The results indicate that this method shows a good correction effect on the survey results of test points under different environmental conditions, which proves that this method is feasible. The correction effect of this method is affected by the distance between the test point and the datum point; within the range of 60 m horizontally from the datum point, an assurance rate of about 90% can be achieved for the error range of 20 mm. Combining with the built-in ATR (Automatic Target Recognition) technology of the total station, this method can make the elevation survey result reach the accuracy of millimeter level under the range of about 1000 m, by obtaining multiple groups of data and then calculating the mean value. This paper provides a new method for the elevation transfer of sea-crossing bridges under long-distance conditions and harsh environmental conditions.