Using polycrystalline cubic boron nitride compact (cBN) tools, which have different cBN contents and cBN particle sizes, the influences of both the cBN content and the cBN particle size on tool wear in turning of hardened steel at various cutting speeds was experimentally investigated. Three types of cBN tools (a cBN content of 45-55% and 75%, and a cBN particle size of 0.5 μm and 5 μm, respectively) were tested. Furthermore, three kinds of chamfered and honed cutting edges were also used. The main results obtained are as follows: (1) In the case of the cBN tools with the same cBN particle size of 5.0 μm, the tool life of the cBN tool with a cBN content of 75% was longer than that of the cBN tool with a cBN content of 45% at low cutting speed. However, at high cutting speed, the tool life of the cBN tool with a cBN content of 75% was shorter. (2) The tool life of the cBN tool with both a cBN content of 55% and a cBN particle size of 0.5 μm was the longest. (3) The tool wear of cBN tools decreased with a decrease in chamfer width.