Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Numerical analysis of the sediment erosion of the balance valve in a buoyancy regulation system was performed. A numerical model for the two-phase flow inside the balance valve was constructed based on the discrete phase model. The sediment erosion rate on the balance valve was discussed, and the effects of five parameters were considered. The effects of the sediment concentration and valve opening were found to be significant, while the effects of the pressure difference, sediment density, and size were found to be moderate. The erosion rate, according to the numerical results, increased linearly with the sediment concentration, so long-term operation of a buoyancy regulation system in high-concentration areas should be avoided. The erosion rate was the highest when the valve opening was 46.3%, so half-open operating conditions are not recommended. The erosion rate was proportional to the square root of the pressure difference. However, adjusting the pressure difference may not be an effective method for regulating the total erosion. The superposition of the secondary flow and the main stream caused particles to spiral along with the fluid, resulting in asymmetric erosion at the working edge. The erosion rate on the working edge decreased with the increase in the sediment size. Conversely, the erosion rate on the valve ball surface increased with the sixth power of the sediment size. Considering that large particles are more likely to cause a blockage, it is recommended to install a seawater pretreatment device at the inlet to prevent large sediments from entering the valve and to improve the working life of the buoyancy regulation system.
Numerical analysis of the sediment erosion of the balance valve in a buoyancy regulation system was performed. A numerical model for the two-phase flow inside the balance valve was constructed based on the discrete phase model. The sediment erosion rate on the balance valve was discussed, and the effects of five parameters were considered. The effects of the sediment concentration and valve opening were found to be significant, while the effects of the pressure difference, sediment density, and size were found to be moderate. The erosion rate, according to the numerical results, increased linearly with the sediment concentration, so long-term operation of a buoyancy regulation system in high-concentration areas should be avoided. The erosion rate was the highest when the valve opening was 46.3%, so half-open operating conditions are not recommended. The erosion rate was proportional to the square root of the pressure difference. However, adjusting the pressure difference may not be an effective method for regulating the total erosion. The superposition of the secondary flow and the main stream caused particles to spiral along with the fluid, resulting in asymmetric erosion at the working edge. The erosion rate on the working edge decreased with the increase in the sediment size. Conversely, the erosion rate on the valve ball surface increased with the sixth power of the sediment size. Considering that large particles are more likely to cause a blockage, it is recommended to install a seawater pretreatment device at the inlet to prevent large sediments from entering the valve and to improve the working life of the buoyancy regulation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.