LoRa (long range) is a communication technology that employs chirp spread spectrum modulation. Among various low-power wide area network (LPWAN) technologies, LoRa offers unique advantages, including low power consumption, long transmission distance, strong anti-interference capability, and high network capacity. Addressing the issue of power-constrained end devices in IoT application scenarios, this paper proposes an adaptive data rate (ADR) algorithm for LoRa networks designed for power-constrained end devices (EDs). The algorithm evaluates the uplink communication link state between the EDs and the gateway (GW) by using a combined weighting method to comprehensively assess the signal-to-noise ratio (SNR), received signal strength indication (RSSI), and packet reception rate (PRR), and calculates a list of transmission power and data rates that ensure stable and reliable communication between the EDs and the GW. By using ED power consumption models, network throughput models, and ED latency models to evaluate network performance, the Zebra optimization algorithm is employed to find the optimal data rate for each ED under power-constrained conditions while maximizing network performance. Test results show that, in a single ED scenario, the average PRR achieved by the proposed ADR algorithm for power-constrained EDs in LoRa networks is 14% higher than that of the standard LoRaWAN ADR algorithm. In a multi-ED link scenario (50 end devices), the proposed method reduces the average power consumption of EDs by 10% compared to LoRaWAN ADR, achieves a network throughput of 6683 bps, and an average latency of 2.10 s, demonstrating superior performance overall. The proposed method shows unique advantages in LoRa networks with power-constrained EDs and a large number of EDs, as it not only reduces the average power consumption of the EDs but also optimizes network throughput and average latency.