The throttling performance of conventional throttle orifice structures of fluid control valves is very low. Therefore, this paper proposes a novel trapezoidal throttle orifice with excellent throttling performance. The effect of the taper of the throttle orifice on the erosion was researched. Firstly, two schemes of trapezoidal throttle orifice were proposed according to the fluid control valve. Secondly, the excellent throttling performance of the trapezoidal throttle orifice was compared and optimized. Finally, a numerical simulation method of the erosion-resistant ability of the trapezoidal throttle orifice was established. It was found that for the same throttling area, the differential pressure of the trapezoidal orifice was higher than that of the conventional rectangular orifice by about 18.6%. The taper had little effect on the gas production, which increased by only 3.3% during the 10° to 30° change. The maximum erosion was firstly reduced and then increased with increases in the angle from 0 to 25°of the taper. Moreover, the minimum was achieved at about a 20° taper angle. The above research methods provide a theoretical basis for optimizing the size and structure of orifices and the sealing reliability of fluid control valves.