The Standard Template Library (STL) file is the most common data format for the description of an additive manufacturing (AM) geometric model, but it has some disadvantages, such as large errors of the geometric model description, the easy loss of topology information, data duplication, large file sizes, and so on. Aiming at these problems, a direct slicing algorithm based on a Standard for the Exchange of Product Model Data (STEP) model was proposed. For the parts composed of basic types of surfaces such as boundary curves, spherical surfaces and cylindrical surfaces, the traditional geometric method was used to calculate the intersection. For the parts with complex surfaces, the three-dimensional models were described based on Non-Uniform Rational B-Spline (NURBS) surfaces. The NURBS surfaces were layered using a discrete tracking algorithm, the tracking starting point was determined, the intersection line between the tangent plane and each NURBS sub-surface was obtained, and the closed layer contour was formed. Finally, the slicing simulations and printing experiments of solid parts were carried out using the direct slicing algorithm based on the STEP model. It was shown that the dimensional accuracy and surface quality of the printed parts from this algorithm had been significantly improved.