This study investigates the potential of utilizing hazelnut shells (HS) as an innovative filler in three-layer plywood technology, addressing the growing need for sustainable, high-performance materials. Traditional plywood production relies on adhesives enhanced with various fillers to improve physical, mechanical, and operational characteristics. This research explores using native, chemically modified, and activated carbon derived from hazelnut shells as fillers in urea–formaldehyde (UF) resin. The produced plywood’s mechanical properties, water absorption, and formaldehyde emissions were thoroughly analyzed. Key findings demonstrate that incorporating 10 part by weight (pbw) native hazelnut shell flour significantly enhances the modulus of rupture (MOR) to 138.6 N mm−2 and modulus of elasticity (MOE) to 13,311 N mm−2. Chemically modified hazelnut shell flour achieves optimal results at 5 pbw, while activated carbon from hazelnut shells, even at 1 pbw, markedly improves bonding strength (2.79 N mm−2 referred to 0.81 N mm−2 for reference sample without filler added). Notably, activated carbon effectively reduces formaldehyde emissions (2.72 mg 100 g−1 oven dry panel referred to 3.32 mg 100 g−1 oven dry panel for reference samples with 10 pbw filler) and improves water resistance, indicating better further dimensional stability and lower environmental impact. The study also shows that excessive filler content negatively affects strength parameters, confirming the importance of optimizing filler concentration. These results highlight the potential of hazelnut shells as an eco-friendly alternative filler in plywood production, contributing to waste valorization and environmental sustainability. This study supports the practical application of hazelnut shell fillers, promoting a circular economy and reducing reliance on traditional, less sustainable materials, thus providing a valuable solution for the wood composite industry.