In multi-seam coal mining, the water accumulation in the goaf of the upper coal seam will seriously threaten the safety of the lower coal-seam recovery. How to accurately determine the water charging source in the goaf and predict the amount of water accumulation in the goaf after a certain time interval has become a major challenge that urgently needs to be solved in coal production. In this study, we consider the water-discharging goaf of the Tangjiahui Coal Mine as the object of research to investigate the problem of water accumulation in the goaf during the fully mechanized caving mining of extra-thick seams of top coal. We used geochemical methods, water-accumulation space methods, and large-well methods to analyze the hydraulic connections between goaf water and other aquifers, predict the amount of water accumulation in the goaf, and explore the characteristics of water level changes over time. We then used the results to discuss the relationship between the elevation of the accumulated water and the time taken for it to fill the goaf. The results showed that there is a hydraulic connection between the water in the airspace and the goaf water (GW), roof water (RW), floor water (FW) and Ordovician limestone water (OW); the volume of water in the goaf of the working face after mining was 2,106,838.496 m3. The average rate of water accumulation was 65.407 m3/h, and the goaf was expected to have been filled in 32,211.208 h. The derived relationship between the water level and time was H0=−10−12t3+10−7t2−0.0042t+814.61 (R2=0.9837). This study is of great significance for the sustainable development of the safety evaluation of water blocking coal pillars at the mine boundary.