Soil microorganisms are greatly affected by their microenvironment. To reveal the influence of different land use patterns on the composition and diversity of soil bacterial and fungal communities, this study analyzed microbial (bacteria and fungi) community composition and diversity under different land use patterns (vegetable land, wasteland, woodland, cultivated land) based on 16S rRNA, 18S rRNA, and high-throughput sequencing method in the Taojia River Basin. Spearman analysis and redundancy analysis (RDA) were used to explore the correlation between soil physicochemical properties and soil fungal and bacterial community composition, and a partial least squares path model (PLS-PM) was constructed to express the causal relationship between soil physicochemical properties and soil bacterial and fungal community diversity. The results showed that the soil bacterial species richness was highest in vegetable land and the lowest in the wasteland. Proteobacteria is the dominant phylum (20.69%–32.70%), and Actinobacteria is the dominant class (7.99%–16.95%). The species richness of fungi in woodland was the highest, while was the lowest in cultivated land. The dominant phylum of fungi in vegetable land, woodland, and cultivated land is Mucoromycota, 29.39%, 41.36%, and 22.67%, respectively. Ascomycota (42.16%) is the dominant phylum in wasteland. Sordariomyetes of Ascomycota is the dominant class in wasteland and cultivated land. Mortierellomycetes and Glomeromycetes of Mucoromycota are the dominant class in vegetable land and woodland. The results of the Spearman analysis revealed that the dominant groups in the bacterial and fungal communities had significant correlations with soil pH, clay, and sand (p < 0.01). The RDA results showed that soil clay, pH, and moisture were the key environmental factors affecting the diversity of soil microbial communities. Fungal diversity is more affected by different land use patterns than bacteria. These results provided a theoretical basis for the changes in soil microbial community composition and diversity in river basins.