Sulfate-reducing bacteria (SRB) are the primary cause of corrosion in oil and gas pipeline steel. To understand how temperature and immersion time affect the SRB-induced corrosion of BG L450OQO-RCB pipe steel, the present study delved into the morphology and elemental composition of corrosion products, corrosion rate, corrosion solution composition, and electrochemical performance at different temperatures (25, 40, and 60 °C) and immersion times (5, 10, and 20 days). During the SRB corrosion of the investigated steel, extracellular polymeric substances (EPSs), iron sulfide, and iron phosphide were produced on the surfaces of the steel samples, along with the calcium carbonate product. Chloride ions in the corrosion solution contributed to the corrosion of steel and the formation of chlorides on steel surfaces. Over time, the quantities of EPSs, iron sulfide, and iron phosphide gradually decreased with immersion time. The presence of surface iron chloride initially increased and then decreased with immersion time. Conversely, the presence of calcium carbonate surface product initially decreased and then increased with immersion time. The content of SRB extracellular polymer, iron sulfide, and iron phosphide changed imperceptibly between 25 and 40 °C, but the overall content decreased at 60 °C. The content of surface ferric chloride remained practically unchanged between 25 and 40 °C but increased at 60 °C. The calcium carbonate surface product increased slightly with higher temperature. The corrosion of Cu-containing steel by SRB follows the cathodic depolarization theory.