We present the results of the reinforcement of plant root systems in surface soil in a model test to simulate actual precipitation conditions. In the test, Eleusine indica was selected as herbage to reinforce the soil. Based on the various moisture contents of plant roots in a pull-out test, a fitting formula describing the interfacial friction strength between the roots and soil and soil moisture content was obtained to explain the amount of slippage of the side slope during the process of rainfall. The experimental results showed that the root systems of plants successfully reinforced soil and stabilized the water content in the surface soil of a slope and that the occurrence time of landslides was delayed significantly in the grass-planting slope model. After the simulated rainfall started, the reinforcement effect of the plant roots changed. As the rainfall increased, the interfacial friction between the roots and the soil exhibited a negative power function relationship with the water content. These conclusions can be used as a reference for the design of plant slope protection and reinforcement.