Research on the veneer defect image enhancement algorithm based on AMEF-AGC+
Yingda Dong,
Anning Ding,
Qing Li
et al.
Abstract:Aiming at the veneer defect image acquisition process is prone to the problems of blurred edges, inconspicuous contrast and distortion, which cannot show the defects clearly.To improve image analyzability and clarity, a veneer defect image enhancement method based on AMEF-AGC is proposed herein. First, a veneer defect image is subjected to Gamma correction to obtain multiple underexposed image sequences for which Gaussian and Laplacian pyramids are constructed to determine the weights of the multiple exposure … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.