Due to the complex unstructured environmental factors in ridge-planting strawberry cultivation, automated harvesting remains a significant challenge. This paper presents an oriented-ridge double-arm cooperative harvesting robot designed for this cultivation. The robot is equipped with a novel non-destructive harvesting end-effector and two self-developed specialized manipulators, integrated with the strawberry picking point visual perception system based on the lightweight Mask R-CNN and a CAN bus-based machine control system. The greenhouse harvesting experiments show that the robot achieved an average harvesting success rate of 49.30% in natural environments after flower and fruit thinning, while only a 30.23% success rate was achieved in untrimmed natural environments. This indicates that the agronomic practice of flower and fruit thinning can significantly simplify the automated harvesting environment and improve harvesting performance. Automated harvesting efficiency test results show that the single-arm average harvesting speed is 7 s per fruit, while double-arm cooperative harvesting can achieve 4 s per fruit. Future expansion by increasing the number of robotic arms could significantly improve harvesting efficiency. However, the study conducted for this paper was poor for those strawberries whose body or stem was severely blocked, which should be further improved upon in follow-up studies.