Generalized cross-spring pivots (CSPs) are widely used as revolute joints in precision machinery. However, pseudo-rigid-body (PRB) models cannot capture the parasitic motions of a generalized CSP exactly under combined loads; moreover, the characteristic parameters used in PRB methods must be recomputed using optimization techniques. In this study, we develop two simple and accurate PRB models for generalized CSPs. First, a PRB method for a beam is developed based on the beam constraint model and the instantaneous center model, where the beam is modeled as two rigid links joined at a pivot via a torsion spring. Subsequently, two PRB models of the generalized CSP, comprising a four-bar model for accuracy and a pin-joint model for stiffness, are constructed based on a kinematic analysis using the proposed PRB method. A deflection characteristic analysis is then conducted to determine the relationship between the proposed model and the existing models. Finally, the PRB models for the pivot under the action of combined loads are validated via finite element analysis. The error evaluation indicates that the proposed PRB models are more accurate than the results from existing methods. The PRB models proposed here can be used in parametric design of compliant mechanisms.