Insulating materials can be classified into solid, liquid, and gaseous forms. Solid insulation materials are divided into different types such as organic, inorganic, and polymer types. In electrical circuits, solid insulation materials are generally used as components that provide insulation and mechanical support. In recent years, as a result of developing technologies, the production of participation insulation materials with 3D printing technology has become widespread. Three-dimensional printing technology enables the rapid creation of objects by combining materials based on digital model data. It is important to evaluate the materials produced with 3D printing in terms of insulation coordination. Studies have shown that the electrical breakdown strength of solid dielectrics varies depending on factors such as sample type, thickness, the magnitude of applied voltage, and the temperature of the physical environment. According to IEC-60243 standards, there are various methods to measure the breakdown strength of solid insulators applied to different voltage types. In this study, the behavior of PLA, ABS, ASA, PETG, and PC/ABS materials produced with 3D printing and having the potential to be used as insulation materials when exposed to high voltage within the scope of insulation coordination was investigated. The breakdown strengths of solid insulation materials produced with 3D printing were measured in the high-voltage laboratory within the scope of IEC-60243. Breakdown strength was statistically evaluated with the Weibull distribution. Damage analysis of the breakdowns in the test specimens was examined in detail with ImageJ software. With the comparative analysis, the behaviors of PLA, ABS, ASA, PETG, and PC/ABS solid insulation materials were revealed and their superiority over each other was determined.