Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The performance of satellite-to-ground laser-based communication links is highly affected by atmospheric turbulence. Coherent detection with spatial diversity at the ground station receiver can mitigate the scintillation effects caused by atmospheric turbulence. Traditionally, the scintillation effects are modeled based on the Kolmogorov spectrum model. However, the experiments have indicated that scintillation effects on the laser beam propagation have non-Kolmogorov properties. Our goal in the present work is to analyze the average bit error rate (BER), outage probability (OP), and ergodic capacity of the satellite-to-ground heterodyne optical communication system with receiver spatial diversity. A differential phase-shift keying modulation technique is considered in this work. The propagated laser signal from the satellite to the ground station is assumed to be subjected to Málaga-distributed atmospheric turbulence. The atmospheric turbulence statistics are carried out based on the conventional Kolmogorov spectrum model and the three-layer altitude (TLA) non-Kolmogorov spectrum model. The performance of popular diversity combining techniques, namely, maximum ratio combining (MRC) and equal gain combining (EGC) techniques are analyzed. The statistical models of the MRC technique under the Málaga-distributed atmospheric channel model are obtained in analytical form expressions. The statistical models of the EGC technique under the Málaga-distributed atmospheric channel model are obtained via the fast Fourier transform representation of the characteristic function method. Based on these statistical models, average BER, OP, and ergodic capacity expressions for each type of diversity combining technique are derived. For the communication system under investigation, the performance of MRC and EGC multiple aperture receiver systems are compared to a single aperture receiver with the same total aperture area. These comparisons are carried out under the same conditions in terms of zenith angle and signal-to-noise ratio. The obtained results show that the performance of the optical communication system under investigation with MRC and EGC receivers can be improved by increasing the order of diversity. In addition, it is found that the difference in the performance between Kolmogorov and TLA non-Kolmogorov spectrum models is not significant at low zenith angles, while this difference increases as the zenith angle increases. All numerical results are verified by Monte-Carlo simulations.
The performance of satellite-to-ground laser-based communication links is highly affected by atmospheric turbulence. Coherent detection with spatial diversity at the ground station receiver can mitigate the scintillation effects caused by atmospheric turbulence. Traditionally, the scintillation effects are modeled based on the Kolmogorov spectrum model. However, the experiments have indicated that scintillation effects on the laser beam propagation have non-Kolmogorov properties. Our goal in the present work is to analyze the average bit error rate (BER), outage probability (OP), and ergodic capacity of the satellite-to-ground heterodyne optical communication system with receiver spatial diversity. A differential phase-shift keying modulation technique is considered in this work. The propagated laser signal from the satellite to the ground station is assumed to be subjected to Málaga-distributed atmospheric turbulence. The atmospheric turbulence statistics are carried out based on the conventional Kolmogorov spectrum model and the three-layer altitude (TLA) non-Kolmogorov spectrum model. The performance of popular diversity combining techniques, namely, maximum ratio combining (MRC) and equal gain combining (EGC) techniques are analyzed. The statistical models of the MRC technique under the Málaga-distributed atmospheric channel model are obtained in analytical form expressions. The statistical models of the EGC technique under the Málaga-distributed atmospheric channel model are obtained via the fast Fourier transform representation of the characteristic function method. Based on these statistical models, average BER, OP, and ergodic capacity expressions for each type of diversity combining technique are derived. For the communication system under investigation, the performance of MRC and EGC multiple aperture receiver systems are compared to a single aperture receiver with the same total aperture area. These comparisons are carried out under the same conditions in terms of zenith angle and signal-to-noise ratio. The obtained results show that the performance of the optical communication system under investigation with MRC and EGC receivers can be improved by increasing the order of diversity. In addition, it is found that the difference in the performance between Kolmogorov and TLA non-Kolmogorov spectrum models is not significant at low zenith angles, while this difference increases as the zenith angle increases. All numerical results are verified by Monte-Carlo simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.