When Synthetic Aperture Radar (SAR) observes complex structural targets such as oil tanks, it is easily interfered with by multipath signals, resulting in a large number of multipath ghost images in the SAR image, which seriously affect the image clarity. To address this problem, this paper proposes a multi-aspect multipath suppression method. This method observes complex structural targets from different azimuth angles to obtain a multi-aspect image sequence and then uses the difference in sequence features between the target image and the multipath ghost image with respect to aspect angle to separate them. This paper takes a floating-roof oil tank as an example to analyze the propagation path and the ghost image characteristics of multipath signals under different observation aspects. We conclude that the scattering center of the multipath ghost image changes with the radar observation aspect, whereas the scattering center of the target image does not. This paper uses the Robust Principal Component Analysis (RPCA) method to decompose the image sequence matrix into two parts: a sparse matrix and a low-rank matrix. The low-rank matrix represents the aspect-stable principal component in the image sequence; that is, the real scattering center. The sparse matrix represents the part of the image sequence that deviates from the principal component; that is, the signal that varies with aspect, mainly including multipath signals, sidelobes, anisotropic signals, etc. By reconstructing the low-rank matrix and the sparse matrix, respectively, we can obtain the image after multipath signal suppression and also the multipath ghost image. Both the target and the multipath signal provide useful information. The image after multipath signal suppression is useful for obtaining the structural information of the target, and the multipath ghost image is useful for analyzing the multipath phenomenon of the complex structure target. This paper conducts experimental verification using real airborne SAR data of an external floating roof oil tank and compares three methods: RPCA, PCA, and sub-aperture fusion method. The experiment shows that the RPCA method can better separate the target image and the multipath ghost image.