Strain clamps are critical components in high-voltage overhead transmission lines, and detection of their defects becomes an important part of regular inspection of transmission lines. A dual UAV (unmanned aerial vehicle) system was proposed to detect strain clamps in multiple split-phase conductors. The main UAV was equipped with a digital radiography (DR) imaging device, a mechanical arm, and an edge intelligence module with visual sensors. The slave UAV was equipped with a digital imaging board and visual sensors. A workflow was proposed for this dual UAV system. Target detection and distance detection of the strain clamps, as well as detection of the defects of strain clamps in DR images, are the main procedures of this workflow. To satisfy the demands of UAV-borne and real-time deployment, the improved YOLOv8-TR algorithm was proposed for the detection of strain clamps (the mAP@50 was 60.9%), and the KD-ResRPA algorithm is used for detecting defects in DR images (the average AUCROC of the three datasets was 82.7%). Field experiments validated the suitability of our dual UAV-based system for charged detection of strain clamps in double split-phase conductors, demonstrating its potential for practical application in live detecting systems.