Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Soil thermal conductivity in the near-phase-transition zone is a key parameter affecting the thermal stability of permafrost engineering and its catastrophic thermal processes. Therefore, accurately determining the soil thermal conductivity in this specific temperature zone has important theoretical and engineering significance. In the present work, a method for testing the thermal conductivity of fine sandy soil in the near-phase-transition zone was proposed by measuring thermal conductivity with the transient plane heat source method and determining the volumetric specific heat capacity by weighing unfrozen water contents. The unfrozen water content of sand specimens in the near-phase-transition zone was tested, and a corresponding empirical fitting formula was established. Finally, based on the testing results, temperature variation trends and parameter influence laws of thermal conductivity in the near-phase-transition zone were analyzed, and thermal conductivity prediction models based on multiple regression (MR) and a radial basis function neural network (RBFNN) were also established. The results show the following: (1) The average error of the proposed test method in this work and the reference steady-state heat flow method is only 7.25%, which validates the reliability of the proposed test method. (2) The variation in unfrozen water contents in fine sandy soil in the range of 0~−3 °C accounts for over 80% of the variation in the entire negative temperature range. The unfrozen water content and thermal conductivity curves exhibit a similar trend, and the near-phase-transition zone can be divided into a drastic phase transition zone and a stable phase transition zone. (3) Increases in the thermal conductivity of fine sandy soil mainly occur the drastic phase transition zone, where these increases account for about 60% of the total increase in thermal conductivity in the entire negative temperature region. With the increase in density and total water content, the rate of increase in thermal conductivity in the drastic phase transition zone gradually decreases. (4) The R2, MAE, and RSME of the RBFNN model in the drastic phase transition zone are 0.991, 0.011, and 0.021, respectively, which are better than those of the MR prediction model.
Soil thermal conductivity in the near-phase-transition zone is a key parameter affecting the thermal stability of permafrost engineering and its catastrophic thermal processes. Therefore, accurately determining the soil thermal conductivity in this specific temperature zone has important theoretical and engineering significance. In the present work, a method for testing the thermal conductivity of fine sandy soil in the near-phase-transition zone was proposed by measuring thermal conductivity with the transient plane heat source method and determining the volumetric specific heat capacity by weighing unfrozen water contents. The unfrozen water content of sand specimens in the near-phase-transition zone was tested, and a corresponding empirical fitting formula was established. Finally, based on the testing results, temperature variation trends and parameter influence laws of thermal conductivity in the near-phase-transition zone were analyzed, and thermal conductivity prediction models based on multiple regression (MR) and a radial basis function neural network (RBFNN) were also established. The results show the following: (1) The average error of the proposed test method in this work and the reference steady-state heat flow method is only 7.25%, which validates the reliability of the proposed test method. (2) The variation in unfrozen water contents in fine sandy soil in the range of 0~−3 °C accounts for over 80% of the variation in the entire negative temperature range. The unfrozen water content and thermal conductivity curves exhibit a similar trend, and the near-phase-transition zone can be divided into a drastic phase transition zone and a stable phase transition zone. (3) Increases in the thermal conductivity of fine sandy soil mainly occur the drastic phase transition zone, where these increases account for about 60% of the total increase in thermal conductivity in the entire negative temperature region. With the increase in density and total water content, the rate of increase in thermal conductivity in the drastic phase transition zone gradually decreases. (4) The R2, MAE, and RSME of the RBFNN model in the drastic phase transition zone are 0.991, 0.011, and 0.021, respectively, which are better than those of the MR prediction model.
The heat transfer characteristics of porous rock layers (PRLs) have significant seasonal differences. This feature has been used to protect the permafrost subgrade under highways and railways from degeneration. However, in cold sandy environments, the transformation law of heat transfer characteristics of PRLs on account of climate warming and aeolian sand filling needs to be solved. This work developed a coupled heat transfer model for the soil–PRL system aimed at analyzing the convective heat transfer process and mechanism of a closed PRL. Furthermore, the impact of climate warming and sand filling on the cooling performance of the PRL under different mean annual air temperatures (MAATs) of −3.5, −4.5, and −5.5 °C was quantified. The numerical results indicated that the natural convection of the closed PRL occurred only in winter, and the effective convective height of the rock layer decreased with the sand-filling thickness. As the thickness of sand filling increased, the critical temperature difference for the occurrence of natural convection increased, accompanied by decreases in the Rayleigh number, the duration, and intensity of natural convection. When the sand-filling thickness exceeded 80 cm, natural convection would not occur in the PRL. Under a warming scenario of 0.052 °C·a−1, the cooling performance of the PRL could offset the adverse impact of climate warming and raise the permafrost table in the first 20 years. Moreover, the closed PRL can be more effective in permafrost regions with colder MAATs. For cold sandy permafrost zones, sand-control measures should be taken to maintain the long-term cooling performance of the PRL. This study is of great significance in guiding porous rock embankment design and road maintenance along the Qinghai–Tibetan Railway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.