The role of forest community configurations in multiple ecosystem functions remains poorly understood due to the absence of quantifiable metrics for evaluating these configurations. This limitation hinders our ability to use forests to enhance urban well-being effectively. This study integrates both observation and experimentation to elucidate the effects of community configurations on the multifunctionality of forests. We examine seven ecosystem functions in Changchun’s urban forests: carbon sequestration, rainwater interception, temperature reduction, humidity increase, particulate matter reduction, noise reduction, and water conservation. Assortment indices, derived from traditional diversity metrics and relative importance values, reveal a negative correlation with multifunctionality. This suggests that improving forest multifunctionality requires a strategically planned species composition rather than simply increasing diversity. Furthermore, the creation of comprehensive configuration indices for evaluating intraspecific configurations has confirmed their beneficial impact on multifunctionality. Our results highlight the significance of intraspecific structural configurations and advocate for using mixed-species plantings in urban forestry practices. We propose practical management strategies to enhance urban forest multifunctionality, including selecting tree species for their functional benefits, implementing uneven-aged plantings, and integrating both shade-tolerant and sun-loving species. Together, our findings underscore the essential role of community configuration in sustaining multifunctionality and strongly support the management of urban forests.