The objective of this study is to recommend optimized shield design from the shielding viewpoint for installation of the Cyclotron,Cyberknife and Linear Acceleration (LINAC) facility at Bangabandhu Sheikh Mujib Medical University (BSMMU) in Dhaka, Bangladesh. The shield design for Cyclotron, Cyberknife and LINAC has been performed considering ICRP-103 (2007) recommendations for occupational and public dose limits. The optimized design parameters for Radiation Shielding Concrete (RSC) with hardened density of 2.35 gm/cm3 are: 254 cm thickness of RSC as primary barrier for LINAC on both side of the source, 198 cm and 178 cm thickness of RSC on parking side and earthen side wall for Cyclotron, a maze wall of thickness 198 cm and 122 cmRSC for Cyclotron and LINAC, 168 cm and 152 cm thickness of RSC from opposite to the maze wall, slab thickness 152 cm excluding a false ceiling of thickness 122 cm with RSC having a functional story height of 503 cm for LINAC, 122 cm and 259 cm slab thickness of RSC for Cyberknife and Cyclotron. The use of RSC in the shield design of wall and roof shows that it limits radiation exposure of staff, patients, visitors and the public to acceptable level, thus optimizing radiation protection.