Keeping the epidermis of apple rootstock cuttings moist is important for maintaining physiological activities. It is necessary to monitor the epidermis moisture in real time during the growth process of apple rootstock cuttings. A machine vision-based discrimination model for the moisture degree of cuttings’ epidermis was designed. This model optimizes the structure of the semantic segmentation model U-Net. The model takes the Saturation channel and Value channel information of the cutting images in the HSV color space as the characteristics of the cuttings’ moisture, so that the model has good performance in the blue-purple supplementary light environment. The average accuracy of the improved model is 95.07% for dry and wet cuttings without supplementary light, and 84.83% with supplementary light. The humidification system implanted in the model can control the atomizer to complete the task of moisturizing the cuttings’ epidermis. The average moisture retention rate of the humidification system for cuttings was 92.5%. Compared with the original model, the moisturizing effect of the humidification system increased by 26.87%. The experimental results show that the improved U-Net model has good generalization and high accuracy, which provides a method for the design of an accurate humidification system.