During manufacturing nuts of increased height, a problem of obtaining correct cylindrical form of the hole for thread and overall geometrical parameters arises. To solve the problem it is necessary to know regularity of the blank forming process. Results of the study of a technological process of high hexahedral nuts forming presented. The nuts were M18 of 22 mm height, M16 of 19 mm height and M12 of normal height 10 mm according to GOST 5915–70, accuracy class B, steel grade 10 according to GOST 10702–78. The volumetric stamping was accomplished at the five-position automatic presses of АА1822 type. It was determined, that unevenness of the metal flow in the process of plastic deformation of blanks of increased height nuts was caused by different stress conditions by their sections. To simulate the mode of deformation, the program complex QForm-3D was chosen. The complex ensured to forecast with necessary accuracy the metal flow in a blank, as well as to define the deformation force and arising stress in the working instrument. The simulation showed the presence of regularity between preliminary formed buffle and deviation of dimensions and form of a blank wall after its finishing piercing, which can be expressed by a nonlinear dependence. The limit values of the relative height of the buffle С/D = 0.56–0.588 defined, exceeding which will result in rejection of the finished product. Accounting the limit values of the relative height of the buffle will enable to correct a mode of technological operations and technological instruments at stamping of high hexahedral nuts.