In this work we have proposed a model for Citizen Profiling. It uses veillance (Surveillance and Sousveillance) for data acquisition. For representation of Citizen Profile Temporal Knowledge Graph has been used through which we can answer semantic queries. Previously, most of the work lacks representation of Citizen Profile and have used surveillance for data acquisition. Our contribution is towards enriching the data acquisition process by adding sousveillance mechanism and facilitating semantic queries through representation of Citizen Profiles using Temporal Knowledge Graphs. Our proposed solution is storage efficient as we have only stored data logs for Citizen Profiling instead of storing images, audio, and video for profiling purposes. Our proposed system can be extended to Smart City, Smart Traffic Management, Workplace profiling etc. Agent based mechanism can be used for data acquisition where each Citizen has its own agent. Another improvement can be to incorporate a decentralized version of database for maintaining Citizen profile.