Colloidal nanocrystals are a promising fluorescent class of materials whose spontaneous emission features can be tuned over a broad spectral range via their composition, geometry, and size. However, toward embedding nanocrystal films in elaborated device geometries, one significant drawback is the sensitivity of their emission properties on further fabrication processes like lithography, metal or oxide deposition, etc. In this work, we demonstrate how bright-emitting and robust thin films can be obtained by combining nanocrystal deposition from solutions via spin coating with subsequent atomic layer deposition of alumina. For the resulting composite films, the layer thickness can be controlled on the nanoscale and their refractive index can be finely tuned by the amount of deposited alumina. Ellipsometry is used to measure the real and imaginary part of the dielectric permittivity, which gives direct access to the wavelength dependent refractive index and absorbance of the film. Detailed analysis of the photophysics of thin films of core-shell nanocrystals with different shapes and different shell thicknesses allows to correlate the behavior of the photoluminescence and of the decay lifetime to the changes in the nonradiative rate that are induced by the alumina deposition. We show that the photoemission properties of such composite films are stable in wavelength and intensity over several months and that the photoluminescence completely recovers from heating processes up to 240 °C. The latter is particularly interesting since it demonstrates robustness to the typical heat treatment that is needed in several process steps like resist-based lithography and deposition by thermal or electron beam evaporation of metals or oxides.