Compared with rose, chrysanthemum, and water lily, the absence of short-wide and long-narrow tepals of ornamental lotus (Nelumbo Adans.) limits the commercial value of flowers. In this study, the genomes of two groups of lotus mutants with wide-short and narrow-long tepals were resequenced to uncover the genomic variation and candidate genes associated with tepal shape. In group NL (short for N. lutea, containing two mutants and one control of N. lutea), 716,656 single nucleotide polymorphisms (SNPs) and 221,688 insertion-deletion mutations (Indels) were obtained, while 639,953 SNPs and 134,6118 Indels were obtained in group WSH (short for ‘Weishan Hong’, containing one mutant and two controls of N. nucifera ‘Weishan Hong’). Only a small proportion of these SNPs and Indels was mapped to exonic regions of genome: 1.92% and 0.47%, respectively, in the NL group, and 1.66% and 0.48%, respectively, in the WSH group. Gene Ontology (GO) analysis showed that out of 4890 (NL group) and 1272 (WSH group) annotated variant genes, 125 and 62 genes were enriched (Q < 0.05), respectively. Additionally, in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, 104 genes (NL group) and 35 genes (WSH group) were selected (p < 0.05). Finally, there were 306 candidate genes that were sieved to determine the development of tepal shape in lotus plants. It will be an essential reference for future identification of tepal-shaped control genes in lotus plants. This is the first comprehensive report of genomic variation controlling tepal shape in lotus, and the mutants in this study are promising materials for breeding novel lotus cultivars with special tepals.