Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Cyclic gas injection in hydraulically-fractured wells has been successfully applied as an enhanced oil recovery (EOR) method in tight unconventional basins such as the Permian and Eagle Ford. However, displacement processes (continuous gas, solvent or water injection) such as those piloted in the relatively more permeable Bakken formation have not been considered in tighter basins. In this work, we present a novel displacement process that uses alternating injecting and producing hydraulic fractures to flood the inter-fracture region around a horizontal well. We demonstrate that the method is feasible as long as suitable fracture geometries can be generated. A reservoir geomodel of a typical Montney gas condensate reservoir was constructed using publicly available data. Rock mechanics parameters were integrated into the model alongside completion and pumping schedule information to predict hydraulic fracture propagation and geometries representative of the typical stimulated volumes in Montney. A compositional numerical reservoir simulator was then used to test the proposed EOR process in a gas condensate reservoir where we forecast liquid recovery under different frac-to-frac continuous gas injection flooding scenarios. Sensitivities to study the effect of fracture spacing and complexity, solvent composition, starting time of gas injection, and matrix permeability were performed. With simultaneous injection and production from alternating hydraulic fractures, it is possible to flood the volumes between them and consequently avoid the drawbacks of huff ’n’ puff processes. By using a more rigorous fracture description, we can reproduce the interactions between fractures and determine how they affect the conformance of the displacement front. Modeling results showed that frac-to-frac displacement process can significantly improve the condensate recovery compared to primary or even huff n puff EOR process. They also showed that the frac-to-frac EOR process is feasible only if the formation mechanical properties and in-situ stresses are such that the resulting hydraulic fractures exhibit aligned planar geometries. If high-intensity natural fracture networks are present, the hydraulic fractures tend to form complex geometries that negatively affect the conformance of the flooding front. The study also showed that there is an optimal spacing between the injecting and producing fractures that would allow for the efficient utilization of the EOR agent; this spacing was shown to have a strong dependence on matrix permeability. Composition of injected solvent and starting time of gas injection doesn’t seem to have considerable impact on incremental recovery due to frac-to-frac displacement.
Cyclic gas injection in hydraulically-fractured wells has been successfully applied as an enhanced oil recovery (EOR) method in tight unconventional basins such as the Permian and Eagle Ford. However, displacement processes (continuous gas, solvent or water injection) such as those piloted in the relatively more permeable Bakken formation have not been considered in tighter basins. In this work, we present a novel displacement process that uses alternating injecting and producing hydraulic fractures to flood the inter-fracture region around a horizontal well. We demonstrate that the method is feasible as long as suitable fracture geometries can be generated. A reservoir geomodel of a typical Montney gas condensate reservoir was constructed using publicly available data. Rock mechanics parameters were integrated into the model alongside completion and pumping schedule information to predict hydraulic fracture propagation and geometries representative of the typical stimulated volumes in Montney. A compositional numerical reservoir simulator was then used to test the proposed EOR process in a gas condensate reservoir where we forecast liquid recovery under different frac-to-frac continuous gas injection flooding scenarios. Sensitivities to study the effect of fracture spacing and complexity, solvent composition, starting time of gas injection, and matrix permeability were performed. With simultaneous injection and production from alternating hydraulic fractures, it is possible to flood the volumes between them and consequently avoid the drawbacks of huff ’n’ puff processes. By using a more rigorous fracture description, we can reproduce the interactions between fractures and determine how they affect the conformance of the displacement front. Modeling results showed that frac-to-frac displacement process can significantly improve the condensate recovery compared to primary or even huff n puff EOR process. They also showed that the frac-to-frac EOR process is feasible only if the formation mechanical properties and in-situ stresses are such that the resulting hydraulic fractures exhibit aligned planar geometries. If high-intensity natural fracture networks are present, the hydraulic fractures tend to form complex geometries that negatively affect the conformance of the flooding front. The study also showed that there is an optimal spacing between the injecting and producing fractures that would allow for the efficient utilization of the EOR agent; this spacing was shown to have a strong dependence on matrix permeability. Composition of injected solvent and starting time of gas injection doesn’t seem to have considerable impact on incremental recovery due to frac-to-frac displacement.
As hydrocarbon formation continues, owing to its natural sourcing, technologies have continually emerged on how these hydrocarbons can be effectively produced at a commercial benchmark. Asides its natural drive system, the enhanced oil recovery methods have been one key approach that has been effected towards increasing hydrocarbon's production rate, from its reservoirs. The natural reservoir energy has allowed for about 10% production of original oil in place. And, extending a field's productive life by employing the secondary recovery has further improved production to 20 to 40%, with EOR amounting to about 30 to 60% production. This however, would tell of the impending need towards further developments on increasing upon this production rate. Hence, the approach on using a pneumatic operated assembly with considerations made on onshore wells. This paper seeks to depict a focal on "Pneumatic IOR (Improved Oil Recovery)" as a method to be effected for onshore wells towards improving its productivity. The pneumatic system uses compressed air, contained in a cylinder - through specialized tubing, alongside pressure control systems, that helps regulate the flow and amount of the compressed air; to propel a metallic bar that will act on the reservoir surface. A force of impact, which will induce vibrations inwards, is generated. The mechanical motion of the metal bars for which this compressed air acts upon will provide the travel force, which when it acts on the reservoir surface of interest, will induce geologic stresses. This stresses and vibrations are important constituents in increasing pressure, downhole. Thereby, enabling fluid flow upwards through the wellbore to the surface. And, this will proffer the necessary physics, needed for pressure development downhole, which will be of importance in improving Oil Recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.